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INTRODUC TION
On April 20, 2010, the explosion of 
the Deepwater Horizon (DWH) oil rig 
resulted in the loss of 11 lives and the 
largest oil spill in US history (Graham 
et al., 2010) and perhaps the second 
largest in the world, after the first Gulf 
War Oil Spill from Kuwait. Over the 
84 days following the explosion, an esti-
mated 6.7 x 105 mT of Louisiana Sweet 
Crude oil (United States Government, 
2011) and up to 500,000 mT of methane 
and gases (Joye et al., 2011) were 
released from 1,480 m below the ocean’s 
surface into the Gulf of Mexico (GoM). 
As oil continued to escape from the 
seafloor throughout the summer of 2010, 
images of oiled wildlife pervaded the 
news. These pictures, though troubling, 
only hinted at the fate of the plankton 
that form the foundation of the GoM 
ecosystem. This review discusses the 
potential effects of the DWH oil spill on 
the overlooked, but extremely important, 
members of the GoM ecosystem—the 
plankton. Our assessment is based on 
data collected in the aftermath of the 
DWH spill and supplemented with 
studies from past oil spills when infor-
mation on the GoM spill was limited or 
unavailable. The time line we develop 
traces the spill from a “planktonic 
perspective,” emphasizing the population 
dynamics of marine bacteria, phyto-
plankton, zooplankton, and fish larvae.

ECONOMICS AND ECOSYSTEM 
OF THE GULF OF MEXICO
With its white sandy beaches and 
productive waters, the GoM sustains a 
number of lucrative industries, including 

shrimp, oysters, menhaden, and bluefin 
tuna. The GoM shrimp fishery was 
valued at $367 million dollars in 2008 
(NOAA, 2010). The larval stages of 
shrimp and other organisms are particu-
larly vulnerable in oil-contaminated 

waters. Revenue losses from fisheries 
in Louisiana alone are estimated to 
be between $100–200 million (IEM, 
2010). Tourism brings in an estimated 
$20 billion to the Gulf region (EPA, 
2011), and huge losses are expected 
in the foreseeable future due to 
avoidance of areas impacted by the 
Deepwater Horizon disaster.

From April through June, the GoM 
serves as the sole breeding ground for 
western Atlantic bluefin tuna, a commer-
cially important and endangered species. 
Atlantic bluefin tuna exhibit broadcast 
spawning in the oligotrophic waters 
of the GOM lower continental slope, 
including the area of surface oil dispersal 
(Figure 1; Teo et al., 2007; Muhling 
et al., 2010). They are the highest valued 
Atlantic tuna species in the Asian sushi 
and sashimi markets ($400 a pound 
at Tokyo’s Tsukiji fish market), and 
they are overfished.

The GoM is also one of the United 
States’ main sources of oil, with 
~ 4,000 oil platforms that collectively 
produce almost a quarter of America’s 
petroleum (Considine et al., 2004; 
Trevors and Saier, 2010). Up to 350 natu-

rally occurring seeps distributed 
throughout the Gulf (Kvenvolden and 
Cooper, 2003) support microbial assem-
blages with a well-developed ability 
to oxidize hydrocarbons (Hazen et al., 
2010). Respiration by these oil-degrading 
bacteria can create thin oxygen-
minimum layers close to the seafloor 
(Bender et al., 2005), potentially affecting 
the communities that can live in those 
environments. However, GoM waters are 
well ventilated, and benthic oil-derived 
hypoxia tends to be local and transient 
(Bender et al., 2005).

APRIL 20 ,  2010
The DWH oil platform explodes and 
sinks 66 km off the coast of Louisiana, 
allowing oil to escape uncontrolled 
from the Macondo wellhead.
Immediately following the explo-
sion of the DWH oil rig, surface 
slicks of Louisiana Sweet Crude oil 
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began appearing, covering as much 
as 75,000 km2 within one month 
(Cleveland et al., 2011). This crude oil is 
a structurally complex, heterogeneous 
mixture comprised of simple aliphatic 
hydrocarbons (SAHs), aromatic hydro-
carbons (including polycyclic aromatic 
hydrocarbons, PAHs), resins, and 
asphaltenes. While dissolution—the 
chemical stabilization of crude oil 
components in seawater—is a minor 
pathway for oil loss compared with evap-
oration and emulsification, the dissolved 
fraction of crude oil is most toxic to 
aquatic species. This water-soluble 
fraction (WSF) tends to be comprised 

of low-molecular-weight aliphatic 
compounds, aromatic hydrocarbons, 
and PAHs. All oil types and grades 
contain WSFs of varying concentrations, 
but degraded crude varieties tend to 
have higher concentrations (National 
Research Council, 2003; Head et al., 
2006). WSF components were detected 
at the DWH blowout with greatest signal 
intensities near 1,000 and 400 m depth. 
Although absolute concentrations could 
not be measured in the water column, 
it is likely that some portion of the total 
WSF migrated into the euphotic zone 
after the DWH spill (Camilli et al., 2010).

The chemical diversity of crude oil 

creates niches for bacterial substrate 
specialists during the course of biodegra-
dation. Through the activities of various 
specialist bacteria, the composition and 
concentration of the chemical compo-
nents of raw crude oil change over time 
(Dutta and Harayama, 2000; Head et al., 
2006). A boom-and-bust cycle of bacte-
rial succession is common, though not 
certain, after oiling events. A general 
community progression beginning 
with consumers of SAHs, followed by 
the consumers of PAHs and methane 
(Figure 2), frequently arises after marine 
oil spills, although this hierarchy can 
be altered or arrested depending on 
environmental conditions such as 
temperature, nutrient concentrations, 
salinity, and pressure (National Research 
Council, 2003; Valentine et al., 2010).

While the oil may have been a boon 
for certain bacterial types, both the oil 
and oil biodegradation can cause prob-
lems for phytoplankton in the immediate 
vicinity of a spill. Thick, buoyant oil slicks 
inhibit air-sea gas exchange and light 
penetration, both essential to photo-
synthesis and phytoplankton growth 
(González et al., 2009). The PAHs in the 
oil also affect phytoplankton growth, 
with responses ranging from stimulation 
at low concentrations of oil (1 mg L–1) 
to inhibition at higher concentrations 
(100 mg L–1; Harrison et al., 1986).

Like the phytoplankton, many 
zooplankton species are sensitive to the 
chemicals found in the oil. Copepods in 
direct contact with the spill were likely 
to experience increased mortality and 
decreased feeding and reproduction 
(Suchanek, 1993), potentially allowing 
blooms of phytoplankton (Figure 2). 
Tolerance to oil varies by species, and a 
study of GoM zooplankton communities 
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found that mortality tended to be more 
dependent upon exposure time than 
concentration of oil (Figure 3), though 
the highest oil concentrations led to the 
highest mortalities (50% after 50 hours; 
Lee and Nicol, 1977). Copepods 
may also be able to sense and avoid 
oiled areas (Seuront, 2010), thus 
reducing their contact and potential 
mortality (Figure 4). 

The same may not be true of Atlantic 
bluefin tuna larvae. PAHs are known 
to be highly toxic to larval herring, 
topsmelt, minnow, and salmon (Petersen 
and Kristensen, 1998; Heintz et al., 1999; 
Couillard et al., 2005). Toxic effects 
include hemorrhages, spinal deformities, 
growth retardation, and death (Billiard 
et al., 1999; Carls et al., 1999). While 
larvae of different fish species exhibit 
variable sensitivities to PAHs, deformities 
and/or death are probable for larvae that 
come into direct contact with the oil.

MAY 15 JULY 12,  2010
Of the estimated 2.1 million gallons 
of chemical dispersant (Corexit 9500 
and Corexit 9527) released, more than 
one-third was injected at the wellhead 
site at depths greater than 1.5 km 
(Kujawinski et al., 2011).
The use of subsurface dispersants 
combined with high pressure and turbu-
lence at the wellhead likely contributed 
to the formation of the subsurface oil 
plumes that were unique to the DWH 
(Kujawinski et al., 2011). Oil dispersants 
contain both surfactants and solvents, 
which lower interfacial tension between 
oil and water boundaries and reduce the 
tendency of oil to aggregate (Singer et al., 
1994). The concentration of dissolved 
hydrocarbons increases by up to five 
times when Corexit is applied to crude 
oil (Fucik et al., 1994). Use of dispersant 
can expedite the removal of oil from the 
water column by increasing the rate of 

biodegradation by bacteria (Venosa and 
Holder, 2007). However, the literature 
is inconclusive as to the toxicological 
effects of dispersant on bacteria, with 
studies showing both growth enhance-
ment and retardation (Mulkins-Philips 
and Stewart, 1974; Bruheim et al., 1999; 
Garcia et al., 2001). Still, key investiga-
tions have cautiously concluded that 
chemical dispersants are appropriate 
for enhancing microbial degradation 
(National Research Council, 2005). 
By late May, SAH-degrading bacteria, 
particularly the order Oceanospirillales 
(Hazen et al., 2010) had increased to 
the point that they represented over 
90% of the bacteria inside the plume 
compared to only 5% in samples 
acquired outside the plume (Figure 2). 
Following the bloom of Oceanospirillales, 
another γ-proteobacteria from the 
genus Cycloclasticus known to degrade 
SAHs and PAHs bloomed in late June 
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on previous studies) 
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(Kasai et al., 2002; Valentine et al., 
2010). Respiration rates due to the 
degradation of SAHs were measured to 
be ~ 1 µM O2 d–1 (Camilli et al. 2010), 
accounting for ~ 70% of the low-oxygen 
anomaly associated with the main 
plume (Valentine et al., 2010). Models of 
oxygen depletion due to bacterial respi-
ration predicted hypoxia would occur 
within a few hundred kilometer radius 
of the wellhead at depths greater than 
1,000 m (Adcroft et al., 2010). Though 
measurements showed oxygen draw-
down, there was no evidence of hypoxia 
(Kessler et al., 2011).

Biodegradation by bacteria can also 
incorporate chemically dispersed oil 
into the food web. Graham et al. (2010) 
showed a decrease in the δ13C of the 
small suspended particles (including 
phytoplankton) and mesozooplankton 
after the spill toward the δ13C value of 
the local crude oil. This decrease implies 
uptake and transfer of components of 
the oil through the planktonic food web. 
Bioaccumulation of hydrocarbons at 

the base of the food web could increase 
exposure of higher-trophic-level organ-
isms, with potentially delayed negative 
effects (Wolfe et al., 1998).

The mixture of crude oil and Corexit 
has been found to be more toxic to 
phytoplankton and fish larvae than 
oil alone (Hsiao et al., 1978: a mixture 
of four different oils; Middaugh and 
Whiting, 1995: WSF of No. 2 Fuel Oil). 
Acute toxicity tests on the larval stages 
of several invertebrates indigenous to 
the GoM, such as shrimp, oysters, and 
crabs, showed that mixtures of the GoM 
oil from different wells and Corexit 
were about as toxic as the WSF of the 
oil alone (Fucik et al., 1994). Most of 
the toxicity of the oil-Corexit mixture 
occurred in the first 24 hours, probably 
due to the increased volatilization of 
certain components of the oil (Fucik 
et al., 1994). In some experiments, 
increases in toxicity could be attributed 
to the chemical properties of disper-
sants, which can affect the cellular 
membranes of planktonic organisms by 

increasing permeability to toxic chemi-
cals, disrupting respiration, and causing 
membrane lysis (Singer et al., 1991).

JULY 15SEPTEMBER 19,  2010
After three months, the DWH well 
was finally capped. Relief wells were 
drilled, and the wellhead was declared 
effectively dead.
At the time of the well capping, studies 
were beginning to reveal a resilient 
GoM planktonic ecosystem, reflecting 
a local adaptation to natural oil seeps. 
Changes in the structure of bacterial 
communities were seen mainly in the 
relatively short-term shifts in dominance 
from Oceanospirillales (SAH degraders) 
to Cycloclasticus (PAH degraders) 
(Figure 2). Subsequently, almost all of 
the released methane from the spill 
was eliminated by a bloom of bacte-
rial methanotrophs in late August that 
oxidized CH4 to CO2 (Kessler et al., 
2011). Although this rapid oxidation 
of methane raised concern about the 
potential for hypoxia, measurements 
by Kessler et al. (2011) showed that 
dissolved O2 concentrations—while 
low—were about three times higher than 
the level at which fisheries would be 
threatened (Camilli et al., 2010).

Meanwhile, we speculate that 
phytoplankton community structure 
changed and biomass increased (Teal 
and Howarth, 1984) due to a combi-
nation of the detrimental effects of 
oil contamination and the beneficial 
effects of decreased predation. Similarly, 
a predicted rapid recovery of the 
zooplankton would be due to their 
short generation times and high fecun-
dity, their ability to avoid oily patches 
(Seuront, 2010), and their recruitment 
from unaffected areas. In most historical 
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oil spills, zooplankton abundance and 
community structure did not appear 
to be affected beyond several weeks 
following the incident (Davenport, 1982; 
Johansson et al., 1980; Varela et al., 
2006). Therefore, we hypothesize that 
any initial phytoplankton increase or 
zooplankton population decline would 
be transient (Figure 2).

Hydrocarbon-degrading microbes 
provided a link between the plumes of 
oil generated at depth and the rest of 
the oceanic food web. Graham et al.’s 
(2010) study demonstrated that both the 
mesozooplankton and small particulate 
matter had incorporated oil-derived 
(low δ13C) carbon; the overall impact of 
this transfer to zooplankton is yet to be 
determined. However, sampling in the 
area showed that recovery to pre-spill 
δ13C values only took about two to four 
weeks (Graham et al., 2010).

As the oil makes its way up the food 
chain, its effects on Atlantic bluefin tuna 
larvae remain unclear. While contact 
with the oil probably resulted in larval 
mutation or death, the boom-and-bust 
cycles in the microbial loop may have 
led to increases in the main prey sources 
of these larvae, namely heterotrophic 
microplankton (Llopiz et al., 2010; 
Nakagawa et al., 2007). Therefore, for the 
Atlantic bluefin tuna, being in the right 
place at the right time may prove to be 
the deciding factor for the population.

CONCLUSION
While studies of the DWH oil spill will 
continue to provide new information 
in the coming months and years, early 
research shows that the planktonic 
community exhibits an encouraging level 
of resilience. Its pre-existing acclimation 
to the presence of hydrocarbons, as well 

as its diversity and specialization, may 
have predisposed the community to 
respond to and even exploit a seemingly 
catastrophic event such as the DWH 
oil spill. Specialists within the diverse 
bacterial communities exhibited rapid 
boom-and-bust cycles, showing signs of 
returning to background levels as early 
as 60 days after the blowout. Although 
individual phytoplankton species may 
have experienced relative mortality or 
enhanced growth, the direct negative 
effects of oil were probably largely offset 
by a decrease in predation. Dispersion 
and degradation of oil in surface 
seawater, high rates of reproduction 
of marine planktonic organisms, and 
circulation and mixing in the ocean may 
also have contributed to rapid recovery 
of phytoplankton populations within 
weeks to months. Zooplankton, due to 
rapid reproduction and ability to avoid 
direct contact with oil, may have been 
minimally affected in the long run. 
Lastly, Atlantic bluefin tuna would likely 
suffer significant mortality with direct 
oil contact, but secondary effects such 
as an increase in food supply are still to 
be determined. Therefore, while delayed 
impacts of bioaccumulation in higher 
trophic levels may still prove signifi-
cant, the direct impacts of DWH oil on 
the planktonic community—marine 
bacteria, phytoplankton, zooplankton, 
and fish larvae—provide some hope for a 
resilient and thriving GoM.
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